

Lifting Lug Design In Detail

Prepared by Sachin Pol and Fauzan Badiwale

Typical Lifting Arrangements for Vessel

于) mageerafix

Different types of Lifting Arrangements

If Imagetirafix

Typical Lifting Arrangements for Horizontal Vessels

PPM

Typical Lifting Arrangements for Leg Supported Vessels

Horizontal to vertical lifting Forces

Top Head Lug
Reaction at lifting lug

Horizontal to vertical lifting Forces Calculations

PPM

Resolving the forces in vertical direction

$$
W_{L}=T+P
$$

$\mathrm{L}_{1} \cos \theta=\mathrm{L}_{2} \cos \theta+\mathrm{L}_{3} \cos \theta$

$$
T^{*} L_{1} \cos \theta+T^{*} L_{4} \sin \theta=W_{L}{ }^{*} L_{2} \cos \theta
$$

Hence,

$$
\mathbf{P}=\mathbf{W}_{\mathrm{L}}-\mathbf{T}
$$

Taking moment at for equilibrium of the forces,
$W_{L} *\left(L_{3} \cos \theta+L_{4} \sin \theta\right)=\mathbb{P}\left(L_{1} \cos \theta+L_{4} \sin \theta\right)$

$$
T=\frac{W_{L} * L_{2} \cos \theta}{L_{1} \cos \theta+L_{4} \sin \theta}
$$

$$
W_{L} *\left(L_{3} \cos \theta+L_{4} \sin \theta\right)=\left(W_{L}-T\right) *\left(L_{1} \cos \theta+L_{4} \sin \theta\right)
$$

$$
\mathrm{W}_{\mathrm{L}} * \mathrm{~L}_{3} \cos \theta+\mathrm{W}_{\mathrm{L}} * \frac{y_{4}}{} \sin \theta=\mathrm{W}_{\mathrm{L}} * \mathrm{~L}_{1} \cos \theta+\mathrm{W}_{\mathrm{L}} * \operatorname{L}_{4} \sin \theta-\mathrm{T}_{8}^{*} \mathrm{~L}_{1} \cos \theta-\mathrm{T}^{*} \mathrm{~L}_{4} \sin \theta
$$

Horizontal to vertical lifting Forces Calculations

Sample Problem

Where, $L_{3}>L_{2}$
By Using Following Equations loads are calculated,

$$
T=\frac{W_{L} * L_{2} \cos \theta}{L_{1} \cos \theta+L_{4} \sin \theta}
$$

Loads T and P			
θ			
θ	T	P	
0	171.7	228.3	
10	170.6	229.4	
20	169.6	230.4	
30	168.3	231.7	
40	166.8	233.2	
50	164.8	235.2	
60	161.9	238.1	
70	156.6	243.4	
80	143.2	256.8	
90	0	400	

$$
\mathbf{P}=\mathbf{W}_{\mathrm{L}}-\mathbf{T}
$$

Lifting Lug Design

Thickness calculations

Thickness Due to bending $=\mathrm{t}_{\mathrm{L}}$

Lifting Lug Design

Thickness calculations

Lifting Lug Design

HEXAGON

Thickness calculations

PV Elite Forces and sign Conventions

PPM

For Vertical Lift

PV Elite Forces and sign Conventions

PPM

For Horizontal Lift

Horizontal Lift

PV Elite Forces and sign Conventions

PPM

PV Elite Lifting Lug Sample Example

Vessel I.D $=1000 \mathrm{~mm}$, Shell Thickness $=\mathbf{6 m m}$, Weight $=\mathbf{2 0 0 0} \mathbf{~ k g}$,
2 Nos of perpendicular lifting lugs provided

PV Elite Lifting Lug Sample Example

Identification	
Item Number	1
Description	Lifting Lug
Legs and Lugs	3.5
Design Pressure, kgf/cm ${ }^{2}$	85
Design Temperature for Internal Pressure, C	1012
Outside Diameter of Vessel, mm	6
Shell Thickness, mm	0
Shell Corrosion Allowance, mm	420
Tangent to Tangent Length of Vessel, cm	SA-516 70
Shell Material	Lifting Lug
Type of Analysis	\square
Analyze Baseplate?	

| Additional Horizontal Force on Vessel, kgf | 0 |
| :--- | :--- | :--- |
| Location of Horizontal Force above Base Point, cm | 0 |
| Empty Weight of Vessel, kgf | 2000 |
| Operating Weight of Vessel (total vertical load), kc | 0 |
| Height of Bottom Tangent above Base Point, cm | 0 |
| Occasional Load Factor (AISC A5.2) | 1 |
| Apply Wind Loads to Vessel ? | \square |
| Apply Seismic Loads to Vessel ? | \square |

PV Elite Lifting Lug Sample Example

Lifting Lug	
Lifting Lug Material	SA-516 70
Lug Orientation to Vessel	Perpendicular
Contact Width or Height (Perp. Lug) of Lifting Lug [w], mm	150
Thickness of Lifting Lug [t], mm	16
Diameter of Hole in Lifting Lug [dh], mm	50
Radius of Semi-circular Arc of Lifting Lug [r], mm	
Height of the Lug from Bottom to Center of Hole [h], mm	75
Offset from Vessel OD to Center of Hole [off], mm	100
Minimum thickness of Fillet Weld around Lug, mm	
Length of weld along side of Lifting Lug [wl], mm	150
Length of weld along bottom of Lifting Lug [wb], mm	28
Lift Information and Loads on one Lug	
Lift Orientation (optional)	Horizontal
Axial Force, kgf	1732
Normal Force, kgf	1000
Tangential Force, kgf	0
Impact Factor	1.5

PV Elite Lifting Lug Sample Example

PPM

Results for lifting lugs, Description : Lifting Lug

PV Elite Lifting Lug Sample Example

PPM

Results for lifting lugs, Description : Lifting Lug

PV Elite Lifting Lug Sample Example

PV Elite Lifting Lug Sample Example

PPM

Shear Stress in the Welds due to Bending Loads [Sblf]:

```
= Fn*(h-YLL_B) * *YLL/ILC]+(Fax*Off *YLL/ILC) + (Ft*off *YLC/ILL)
=(1500 *(75.00र -75.000))}\mp@subsup{)}{* 81.000 /542.023 +}{*
    (1299*100.000 * 81.000/542.023) +
    (0 *100.000 * 14.e00 /24.515 )
= 194.13 kgf/cm^2
Stress=M / Z = Fn x (h-YLL_B) / ILC/YLL = Fn x (h-YLL_B)*YLL/ILC
```

M = Force * Moment arm =

PV Elite Lifting Lug Sample Example

PV Elite Lifting Lug Sample Example

PPM

IT Imagetrafix

