

WELCOME to CAUx Local India 2018

Lifting Lug Design In Detail

Prepared by Sachin Pol and Fauzan Badiwale

Typical Lifting Arrangements for Vessel

Different types of Lifting Arrangements

Typical Lifting Arrangements for Horizontal Vessels

Typical Lifting Arrangements for Leg Supported Vessels

For large vessels Trunnion or Standard Heavy lifting lugs are used

Horizontal to vertical lifting Forces Calculations

 $W_L = T + P$

Hence,

 $\mathbf{P} = \mathbf{W}_{\mathrm{L}} - \mathbf{T}$

Taking moment at **T** for equilibrium of the forces, $W_L *(L_3 \cos\theta + L_4 \sin\theta) = P *(L_1 \cos\theta + L_4 \sin\theta)$

 $W_{L}*(L_{3}\cos\theta + L_{4}\sin\theta) = (W_{L}-T)*(L_{1}\cos\theta + L_{4}\sin\theta)$

 $W_{L} * L_{3} \cos\theta = W_{L} * L_{1} \cos\theta T * L_{1} \cos\theta - T * L_{4} \sin\theta$ $L_{1} \cos\theta = L_{2} \cos\theta + L_{3} \cos\theta$ $W_{L} * L_{3} \cos\theta = W_{L} * L_{2} \cos\theta + W_{L} * L_{3} \cos\theta - T * L_{1} \cos\theta - T * L_{4} \sin\theta$

 $T * L_1 \cos\theta + T * L_4 \sin\theta = W_L * L_2 \cos\theta$

$$T = \frac{W_{L} * L_{2} \cos\theta}{L_{1} \cos\theta + L_{4} \sin\theta}$$

 $W_{L} * L_{3} \cos\theta + W_{L} * L_{4} \sin\theta = W_{L} * L_{1} \cos\theta + W_{L} * L_{4} \sin\theta - T * L_{1} \cos\theta - T * L_{4} \sin\theta$

Horizontal to vertical lifting Forces Calculations

Sample Problem

Where, $L_3 > L_2$

By Using Following Equations loads are calculated,

$$T = \frac{W_{L} * L_{2} \cos\theta}{L_{1} \cos\theta + L_{4} \sin\theta}$$

Loads T and P		
θ	т	Р
0	171.7	228.3
10	170.6	229.4
20	169.6	230.4
30	168.3	231.7
40	166.8	233.2
50	164.8	235.2
60	161.9	238.1
70	156.6	243.4
80	143.2	256.8
90	0	400

Lifting Lug Design

Thickness calculations

Thickness Due to bending = t_L

Lifting Lug Design

Thickness calculations

PV Elite Forces and sign Conventions

PV Elite Forces and sign Conventions

For Horizontal Lift

PV Elite Forces and sign Conventions

Vessel I.D = 1000 mm, Shell Thickness = 6mm, Weight = 2000 kg,

2 Nos of perpendicular lifting lugs provided

Δ	Identification		
	Item Number	1	
	Description	Lifting Lug	
Δ	Legs and Lugs		
	Design Pressure, kgf/cm ²	3.5	
	Design Temperature for Internal Pressure, C	85	
	Outside Diameter of Vessel, mm	1012	
	Shell Thickness, mm	6	
	Shell Corrosion Allowance, mm	0	
	Tangent to Tangent Length of Vessel, cm	420	
D	Shell Material	SA-516 70	
	Type of Analysis	Lifting Lug	
	Analyze Baseplate ?		

Additional Horizontal Force on Vessel, kgf	0
Location of Horizontal Force above Base Point, cm	0
Empty Weight of Vessel, kgf	2000
Operating Weight of Vessel (total vertical load), kg	0
Height of Bottom Tangent above Base Point, cm	0
Occasional Load Factor (AISC A5.2)	1
Apply Wind Loads to Vessel ?	
Apply Seismic Loads to Vessel ?	

Lifting Lug SA-516 70 Lifting Lug Material Lug Orientation to Vessel Perpendicular Contact Width or Height (Perp. Lug) of Lifting Lug [w], mm 150 Thickness of Lifting Lug [t], mm 16 Diameter of Hole in Lifting Lug [dh], mm 50 60 Radius of Semi-circular Arc of Lifting Lug [r], mm 75 Height of the Lug from Bottom to Center of Hole [h], mm 100 Offset from Vessel OD to Center of Hole [off], mm Minimum thickness of Fillet Weld around Lug, mm 6 WĎ 150 Length of weld along side of Lifting Lug [wl], mm 28 Length of weld along bottom of Lifting Lug [wb], mm Lift Information and Loads on one Lug Horizontal Lift Orientation (optional) Axial Force, kgf 1732 Normal Force, kgf 1000 Tangential Force, kgf 0 Impact Factor 1.5

Results for lifting lugs, Description : Lifting Lug

Results for lifting lugs, Description : Lifting Lug

Thank You!

Have a great conversation!

