Minimum Required inputs:

- 1. Design pressure
- 2. Design temperature
- 3. Specific gravity of working fluid
- 4. Corrosion allowance
- 5. Joint efficiency.
- 6. MOC of all the components.
- 7. Number of passes (Shell Side and channel side)
- 8. Loading data

Example:

Design the AES type HE for following design parameter

	Shell Side	Channel Side
Design pressure :	21.7 Kg/Cm ²	32.6 Kg/Cm²
Design temperature:	275 °C	240°C
Specific gravity of working fluid	0.8290	0.7777
Corrosion allowance	3.2	3.2
Joint efficiency	1	1
Number of passes	1	4
Loading data		
Shell ID	1250	
Size of Tube	25.4 mm OD	
Number of tube	958	
Length of tube	6000 mm	
OTL	1200 mm	

Step 1. Channel shell design:

Cylindrical shell under internal pressure.

ASME VIII DIV.1-July 2007

t = minimum required thickness	$t_n = nominal$	l thickness	E = joint efficiency		
P = internal pressure	S = maximu	m allowable stress	T = temperature		
R = inside radius	Ca = Corros Tolerance	sion allowance +	σ = circumferential stress		
R_o = outside radius	$Tol_{\%} = $ toler	ance for pipes	P_a = maximum allowable pressure		
$t_{n,min} = (t+Ca)/Tol_{\%}$ shall be $\leq t_n$	$t_u = (t_n \times Tol_{\%})$	(b)- <i>Ca</i> shall be $\geq t$	P_h = hydrostatic pressure		
UG-27 (c) $t = P(R+Ca)$)/(SE-0.6P)	$\sigma = (P(R+Ca) / t_u + 0.6P) / E$	$P_a = S E t_u / ((R+Ca)+$ 0.6 $t_u)$		
Appendix 1- 1.(a)(1) $t = PR_o/(SE)$	+0.4P)	$\sigma = (PR_o / t_u - 0.4P)$	P) / E $P_a = S E t_u / (R_o - 0.4 t_u)$		

Fill up the highlighted values & Select the shell material to find out minimum required thickness under internal pressure.

Enter the value of shell length; software will check the provided shell thickness under External pressure.

Note: Failure of thickness will be highlighted in red color (it will show minimum required thickness.)

In Our Case: (For Channel Side) R= 625 mm P= 32.6 Kg/Cm² CA= 3.2 mm T= 240°C Software will compute the required thickness. t= 18.02 mm Round up the value and select the standard thickness of 20mm.

Sheet shows Input for Channel shell

					an u	
eral Input		#				
Element Data			1			
Element Description	CHANNEL		Datum			
From Node	30					
To Node	40					
Element Type	Cylindrical	-	1			
Diameter Basis	ID	-	1			
Inside Diameter, mm	1250		1			
Cylinder Length, cm	62		1			
Finished Thickness, mm	20		- i			
Nominal Thickness,mm	20		1			
Internal Corrosion Allowance,m	3.2		1			
External Corrosion Allowance,m	10		1			
Wind Diameter Multiplier	1.2					
Material Name	SA-516 70					
Longitudinal Seam Efficiency	1		•	0	0	
Circumferential Seam Efficiency	1		₽₽₽	<u> </u>	_ <mark>_</mark> _ĨU	
Internal Pressure,kgf/cm²	32.6					
Temperature for Internal Pressur	240					
External Pressure,kgf/cm²	0		i			
Temperature for External Pressu	0					
Additional Element Data						

<u>Step 2.</u> Channel LH flange Design: Give Input values in the following steps. 2.1 Select the flange type Weld neck

2.2 Select MOC of flange

```
SA266 GR 4
```

Software will automatically take stress values for specified MOC at design conditions.

2.3 Enter Design Pressure, Temperature & Joint efficiency.

P= 32.6 Kg/Cm² Ca= 3.2 mm T= 240°C Joint Efficiency= 1

- 2.4 Go to flange dialogue screen and enter the data in the following steps
 - a. Flange ID = Generally flange ID is equal to Shell ID Flange ID= 1250 mm
 - b. Face ID = Shell ID Face ID = 1250 mm
 - c. Gasket ID depends on type of gasket used. Gasket ID = Face ID + 2 x Corrosion allowance The Spiral wound Gasket consists of 13mm of inner ring and 4mm of outer ring. In this case, Gasket ID = Face ID + 2 x Corrosion allowance + (13 x2) Gasket type= Spiral wound Gasket ID= 1250 + (2 x 3.2) + (13 x 2) Gasket ID= 1282.4 say 1283 mm
 - d. Gasket OD = Gasket ID + (2 x Gasket width) Gasket OD = 1283+13x2 Gasket OD = 1309 mm
 - e. Face OD = Gasket OD+3 (in case of Female type face) For male type face, Face OD = Gasket OD For Spiral wound gasket add 8mm in Face OD for outer gasket ring. Face OD = 1309+4x2+3 Face OD = 1320

2.5 In case of Weld neck Flange,

Thickness of hub at smaller end (Gi) = Shell (or Channel) thickness Thickness of shell at large End (Go) = 1.5 x Gi Hub Length (HL) = 2 x Gi (This value can be equal to 1.5 to 2 x Gi) Gi= 20 mm Go= 30 mm HL= 40 mm

2.6 Select Bolt Material, thread series & size of Bolt. (Initially consider smaller size of bolts to perform the calculation)

Bolt MOC= SA193 B7 Software will automatically take stress values for specified MOC at design conditions. Thread series= UNC Bolt Size= 31.75 mm

- 2.7 Select the number of bolts to satisfy the required bolt area. Number of bolts= 56
- 2.8 BCD = Flange ID + Go + 2Rh

Rh is radial distance between Bolt circle and Flange BCD= 1250 + 2 x 20 + 2x44.45 Minimum BCD= 1378.9 Minimum Circumferential distance between two bolts is 71.45 To satisfy the above conditions selecting the BCD of 1400 mm

2.9 Flange OD = BCD + 2E

For Minimum value for Rh & E refer TEMA Table D-5M (Note: As size of Flange depends on BCD, try to keep BCD as minimum as possible. Minimum Circumferential spacing between bolts should be kept according to TEMA Table D-5M.) Flange OD= 1400+2x31.75 Flange OD= 1463.5 Say 1465 mm

- 2.10 Select the gasket material & thickness. Gasket MOC= Spiral wound Gasket thickness= 4.5 mm Software will automatically take stress values for specified MOC at design conditions.
- 2.11 Put the partition gasket details. (MOC of gasket, width & length of gasket.) Partition Gasket MOC= material jacketed Partition Gasket width= 10 mm Partition Gasket length= 2500 mm
- 2.12 Put the external loading information. Put banding moment due to various attachments to the flange. Bending Moment= 143.851 kg-m
- 2.13 Select the option Use full bolt load calculation. (generally customer asks this) Flange thickness= 140 mm

Flange Dialog									
Select a Flange Type						10 N		92 (m.	
• 🔁 💿	p •	r I I I I I I I I I I I I I I I I I I I	p	<u>с</u> о	r o	εŢΦ	• 🔽	0	ľ
Description:	Chanel LH FL			Mating Flange	(use F1 help for	exchanger	s)		
Flange II	D OD : 1250	1465	mm	c	Operating, Wm1	: 0			
Face II	D OD : 1250	1320	mm		Seating, Wm2	: 0		kgf	
Gasket II	D OD : 1283	1309	mm		Design, W	: 0			
Hub Dimensions				External Loads	(e.g. from piping)			
Thickness Large	Small : 30	20	mm		Axial Force	: 0			
Hub L	ength : 40		mm	E	Bending Moment	: 143.851	1	kgf-m.	
Bolts				Partition Gaske	et				
Bolt Material :	5A-193 B7	Matl			Length Width	: 2500	10	mm	
Bolt Circle Diameter :	1400	mm			Sketch Column	: 1a	• I •	•	
Thread Series :	UNC	-		Gas	ket Factor m y	: 3.75	632.763	kgf/cm²	6
Nominal Bolt Diameter :	31.75 mm			Additional Flange	e Data		1	-	
Number of Bolts :	56			📝 Base Reg	uired Thickness c	n Rigidity	(ASME VIII-1)?		
Root Area :	0 cm ²			📝 Include C	orrosion in Flang	e Thicknes	s Calculations?		
				📝 Are the H	lub and Attached	Shell Mate	erials the Same	?	
Gasket									
Gasket Factor m y :	3 703.	07 kgf/cm ³	2						
Sketch Column :	1a 🔻 II	•							
Gasket Thickness :	4.5	mm							
Nubbin or RTJ Width :	0	mm							
ANSI/DIN Flange Dimen	sion Lookup								
📃 Is this a Stand	dard Flange (No C	alculation perfor	ned)?	Thickness : mm				_	
Class: 150 👻	O ANSI Serie:	5 A	140	THICNIESS , IIIII	🔽 Use Full B	Bolt Load in	n calc (Sa*Ab)?		Desiç
Grade: GR 1.1 🚽	ANSI Serie:	s B	110	Just lik	æ:				ору г
Nom: 12 -	Get Flange	e Dimensions nov	w! 📖	Delete		Capcel	Plot		Hole
				Delete		Cancer			пец
Spacing :		Circumferential S	Spacing: Minimu	m 71.45 Actual 7	8.50 Maximum	303.50 mn	n [Ok]		
Bolt	t to Edge: Minimum	31.75 Actual 3	2.50 mm [Ok]		Hub to Bolt: Mi	nimum 44.4	45 Actual 45.0	0 mm [Ok]]
1	Required Thickne	ss Internal: 125	.451 External	0.000 Actus	al Thickness: 14	0.000 mm	[Passed]		_
	tragan our minerene	22 Internan 120				0.000 mm	[. aa]		

Required & provided thickness is shown at the bottom of the sheet. Add Step in Flange thickness according to thickness of gasket. Nominal flange thickness= Flange thickness+ Step+ Hub length In our case add 6 mm step in flange thickness. Nominal flange thickness= 140+6+40= 186mm

<u>Step 3.</u> Design of Channel Cover. Insert the blind flange as channel cover before flange. Give Input values in the following steps. 3.1 Select the flange type

- Bolted Blind flange
- 3.2 Select MOC of flange SA266 Gr.4

3.3 Enter Design Pressure, Temperature & Joint efficiency. P= 32.6 Kg/Cm² Ca= 3.2 mm T= 240°C Joint Efficiency= 1

- **3.4** Go to flange dialogue screen and enter the data in the following steps
 - a. Face ID= adjacent Flange ID 3 Face ID= 1250-3 Face ID= 1247mm
 - b. Gasket ID & OD = Similar to adjacent Flange Gasket ID= 1283 Gasket OD= 1309mm
 - c. Face OD = adjacent Flange face OD 3 Face OD= 1320-3 Face OD= 1317 mm
- **3.5** Bolt Material, size & number of Bolt will be same as adjacent Flange There are three options for this entry:

TEMA Bolt Table
 UNC Bolt Table
 User specified root area of a single bolt
 Bolt MOC= SA193 B7
 Thread series= UNC
 Bolt Size= 31.75 mm
 Number of bolts= 56

- 3.6 Gasket material & thickness will be similar to adjacent Flange. Gasket MOC= Spiral wound Gasket thickness= 4.5 mm
- 3.7 Put the partition gasket details. (MOC of gasket, width & length of gasket.) Partition Gasket MOC= material jacketed Partition Gasket width= 10 mm Partition Gasket length= 2500 mm

3.8 Select the option of Check Cover for deflection at centre & use full bolt load in calculation.

Required thickness is 125.307 mm

For deflection check provided thickness is 130mm

Sheet shows sample Ch Cover input sheet.

Flange Dialog	×
Select a Flange Type	
Description: Ch Cover	Mating Flange (use F1 help for exchangers)
Elance ID LOD : 0 1465 mm	Operating, Wm1 : 0
Face ID OD 1247 1217 mm	Seating, Wm2 : 0 kof
	Design, W : 0
Hub Dimensions	External Loads (e.g. from piping)
Thickness Large I Small : 0 0 mm	Axial Force : 0
Hub Length : 0	Bending Moment : 0 kaf-m.
Bolts	Partition Gasket
Bolt Material : SA-193 B7	
Bolt Circle Diameter : 1400 mm	
Thread Series : UNC	Gasket Factor m y : 3.75 632.763 kgf/cm ²
Nominal Bolt Diameter : 31.75 mm	Additional Flange Data
Number of Bolts : 56	
Root Area : 0 cm ²	Include Corrosion in Flange Thickness Calculations?
Gasket	Are the Hub and Attached Shell Materials the Same?
Gasket Factor m Ly : 3 703.07 kof/cm2	Calculate Cover Deflection (multi-pass unit)?
Sketch Colump : 1a VII	Allowable Cover Deflection : 1.5625 mm
	For Non-Circular Covers
	Diameter (Long Span) : U mm
	Diameter (Short Span) : 0 mm
ANSI/DIN Flange Dimension Lookup	circle centerline :
Is this a Standard Flange (No Calculation perfomed)?	This
Class: 150 V O ANSI Series A	ange Thickness : mm 200 Vise Full Bolt Load in calc (Sa*Ab)? Design
Grade: GR 1.1 V ON ANSI Series B	
Nom: 12 Get Flange Dimensions now!	
	Delete OK Cancel Plot Help
Circumferential Spacing: Mi	inimum 71.45 Actual 78.50 Maximum 280.87 mm [Ok]
Bolt to Edge: Minimum 31.75 Actual 32.50 mm	[Ok]
F Required Thickness Internal: 125.307 Exte	ernal: 0.000 Actual Thickness: 130.000 mm [Passed]
🔐 start 🔰 💈 🗁 Micro Protol Output C 🕺 🗐 Design pro	ocedure for 👔 410-HM-1CD EF Rev

Required & provided thickness is shown at the bottom of the sheet. Add Step in Cover thickness according to thickness of gasket and raised face of matching flange. Maximum deflection is at center; hence maintain the required minimum thickness at the center.

<u>Step 4.</u> Channel RH Flange Repeat the design procedure for Channel LH Flange. (Or Copy the flange data from Channel LH Flange as both flanges are identical)

Step 5. Shell LH Flange
Give Input values in the following steps.
5.1 Select the flange type
Weld neck

5.2 Select MOC of flange similar to adjacent flange.

5.3 Enter Design Pressure, Temperature & Joint efficiency.

P= 21.7 Kg/Cm² Ca= 3.2 mm T= 275°C Joint Efficiency= 1

5.4 Go to flange dialogue screen and enter the data in the following steps (Flange dimensions will be same as adjacent flange dimensions.)

- a. Flange ID similar to adjacent flange ID. Flange ID= 1250 mm
- b. Face ID & OD similar to adjacent flange face ID & OD Face ID = 1250 mm Face OD = 1309+4x2+3 Face OD = 1320
- c. Gasket ID & OD similar to adjacent flange Gasket ID & OD Gasket type= Spiral wound Gasket ID= 1250 + (2 x 3.2) + (13 x 2) Gasket ID= 1282.4 say 1283 mm Gasket OD = 1283+13x2 Gasket OD = 1309 mm

5.5 In case of Weld neck Flange,

Thickness of hub at smaller end (Gi) = Shell (or Channel) thickness Thickness of shell at large End (Go) = 1.5 x Gi Hub Length (HL) = 2 x Gi (This value can be equal to 1.5 to 2 x Gi) Gi= 14 mm Go= 21 mm HL= 28 mm (Change this value of Gi, Go & HL according to designed shell thickness) 5.6 Select Bolt Material, thread series & size of Bolt. Similar to adjacent flange Bolt MOC= SA193 B7 Thread series= UNC Bolt Size= 31.75 mm

Done by: Rishikesh S. Bhere

- 5.7 Select the number of bolts to satisfy the required bolt area. Number of bolts will be similar to adjacent flange. Number of bolts= 56
- 5.8 BCD = Similar to adjacent flange BCD BCD= 1400
- 5.9 Flange OD = Similar to adjacent flange Flange OD= 1465
- 5.10 The gasket material & thickness will be similar to adjacent flange. Gasket MOC= Spiral wound Gasket thickness= 4.5 mm Software will automatically take stress values for specified MOC at design conditions.
- 5.11 Put the external loading information. Put banding moment due to various attachments to the flange. Bending Moment= 3146.66 kg-m
- 5.12 Select the option Use full bolt load calculation. (generally customer asks this)
- 5.13 PV-Ellie software will automatically considers Matching flange load.
- **5.14** Give flange thickness. (initially consider smaller thickness then select flange thickness to satisfy required conditions)

Flange thickness= 156 mm

Sheet shows sample flange input sheet.

lange Dialog	-		_	_	-	-	x
Select a Flange Type							
•	r o 🕻	•	r ·			• 🎦	•
Description:	SH LH FLAN			Mating Flange (use f	F1 help for exchangers)	
Flange ID	OD : 1250	1465	mm	Opera	iting, Wm1 : 0		
- Face ID	OD: 1250	1320	mm	Sea	iting, Wm2 : 0		kgf
Gasket ID	OD : 1283	1309	mm		Design, W : 0		
Hub Dimensions	·			External Loads (e.g.	from piping)		
Thickness Large	Small : 21	14	mm	4	Axial Force : 0		
Hub Le	ength : 28		mm	Bendir	ng Moment : 3146.66		kgf-m.
Bolts				Partition Gasket			
Bolt Material :	SA-193 B7	Matl.		Leng	gth Width : 0	0	mm
Bolt Circle Diameter :	1400	mm		Sketc	h Column : 1a	• II •	
Thread Series :	UNC	-		Gasket F	actor m y : 0	0	kgf/cm²
Nominal Bolt Diameter :	31.75 mm			Additional Flange Data)		
Number of Bolts :	56			🔽 Base Required	- Thickness on Rigidity (#	ASME VIII-1)?	
Root Area :	0 cm ²			📝 Include Corrosi	ion in Flange Thickness	Calculations?	
				🔲 ûre the Hub or	d Attached Shell Mater	iale the Same?	
Gasket				Are the hub an	iu Attacheu Sheli Mater	iais uie pairie:	
Gasket Factor m y :	3 703.07	kgf/cr	m²				
Sketch Column :	1a 🔻 II	-					
Gasket Thickness :	4.5	mm					
Nubbin or RTJ Width :	0	mm					
	ing Lagluer						
Tarbia a Stand	ion Lookup Jard Elange (No Calo	ulation perfe	med)?				
		ulacion perio	Flan	ge Thickness : mm			Design
	ANSI Series A		156		🖉 Use Full Bolt Load in	calc (Sa*Ab)?	
Grade: GR 1.1 V	Col Elange D	imonsions		Just like :			Copy now
Nom: 12 👻	Get Hange D	Intensions n		Delete	OK Cancel	Plot	Help
	Cir	cumferentia	Spacing: Minin	um 71.45 Actual 78.50	Maximum 325.44 mm	[0k]	
Spacing :	n militar an i			1	the pulling at the second		
Bolt	to Edge: Minimum 3:	1.75 Actual	32,50 mm [O	J Hub	to Bolt: Minimum 44.4	5 Actual 54.00	IMM [OK]

Required & provided thickness is shown at the bottom of the sheet. Add Step in Flange thickness according to thickness of gasket. Nominal flange thickness= Flange thickness+ Step+ Hub length In our case add 6 mm step in flange thickness. Nominal flange thickness= 156+6+28= 190mm

Step 6. Main Shell								
For main shell design f	follow the Step 1 &	give	e shell s	side inpu	ıt values.			
In Our Case: (For She	ll Side)	0		-				
Shall ID 1250 mars	in blue)							
Shell ID= 1250 mm								
$P = 21.7 \text{ Kg/Cm}^2$								
Ca= 3.2 mm								
$T = 275^{\circ}C$								
$\mathbf{I} = 2\mathbf{I}\mathbf{S}\mathbf{C}$								
Software will compute	the required thick	ness						
t= 13.11 mm								
Round up the value an	d select the standa	rd fl	hicknes	s of 14m	nm			
		iuu	IICKIIC	5 01 141		_		_
1 410-HIM-ICD EF REV I.PVI:I	- PVEIIte							
🗄 File Input View Details Auxi	iliary Analyze Output Took	s 3D	Diagnostic	s Esl Help				
i 🗅 🧉 🗟 🔒 🔒 📮 i 🗊 🖻	• • • • 🐧 🗖 🗗 :		割↔+	• 🖽 🕅 🔫	四日国		= 1 🖬 🖬 🚍 🖕	i 🔒 🖕
! 🐮 🛪 🕊 🏚 🎨 🗐 🔎 🥱	🕑 🗞 📮 🖬 🗊 🖪 🔗	C) fixi	2 😭 🛛	3 🖬 🗾 🛛	F 🚚 🕅 🏄 🗋	- 24	₽ Units Kgf_cm2	👻 Design Code
General Input								
下 中 中 中 も も も も も			100					
🖃 Element Data			1					
Element Description	SHELL		Datur	1				
From Node	60	_	1					
To Node	70	-						
Element Type	Cylindrical	-						
Diameter Basis	ID	-	1					
Inside Diameter, mm	1250							
Cylinder Length, cm	520		1				lin 8	H LH FLANGE
Finished Thickness, mm	14	_	1					
Nominal Thickness, mm	14	_	1					
Internal Corrosion Allowance, mr	3.2	_						2
External Corrosion Allowance, m	10	_						
Wind Diameter Multiplier	1.2	_	i.			_		
Material Name	SA-516 70							
Longitudinal Seam Efficiency	1		•	<u>ه</u> -	_ <		Datum	ine
Circumferential Seam Efficiency	1		 u				, at a first state of the state	
Internal Pressure, kgf/cm ²	21.7							
Temperature for Internal Pressur	275	_						
External Pressure, kgt/cm ²	0							
Temperature for External Pressur	0							4
Additional Element Data								
							13.45 cm [2	0]
							V	
							X 📕	
						_		
			cm 0	200 4	00 600	-		
🕒 Ge 🛛 🤌 Dec 🗖 Los	📕 Win 🗐 Sei 🛛 🔜 L	e	-	•				
Com Des In Lua								
No External Pressure Specified								
🤔 start 👌 🤅 🍋 Micro Pro	tol Output C. Decian a	rocedu	re for	1 410-HM		а . м		Design rtf [Com
Start Micro Pro	tor oatpat c	roceudi	6101	R 410-HM-	TED EF Rev	31 M	icroprotoroxettiler	E Designard (Com

Done by: Rishikesh S. Bhere

<u>Step 7</u>. Tube sheet design

For tube sheet design give the Input values in following steps.

- 7.1 Tubesheet Type and Design Code:
 - 7.1.a. Select the analysis method. In our cese Tubesheet analysis method: ASME UHX.
 - 7.1.b. Exchanger type. Floating
 - 7.1.c. Floating Exchanger type: Exchanger with an immersed Floating Head.

Fubesheet Type and Design Code	TubeSheet Properties	Tube Data	Expansion Joint Dat	a Load Cases	Floating Tube	sheet	Spherical C	iover / Backing	Ring
🚽 General Exchanger Data ——									
Т	ubesheet Analysis Method :	ASME UH	x		-				
	Exchanger Type :	Election			-				
		Tibacing							
Ex	pansion Joint Type (if any) :	No Joint			· · ·				
ASME or EN-13445									
	Floating Exchanger Type :	Exchange	er with an Immersed I	Floating Head	-				
Tubesheet/Shell Junctio	on Stress Reduction option :	None			•				
TEMA									
	TEMA Exchanger Notation :	A +	E * S *						
	TEMO Exchanger Class								
		<u>.</u>							
Indicate the Shell side Elemen	ts(s)?				•				
CH cover - Element 1 : Fr	rom 10 to 20				=				
Cover Flange - Element 2	: : From 20 to 30								
CHAINNEL - Element 3 : F	rom 30 to 40								
SHIHELANCE - Element	5 : From 50 to 60								
SHELL - Element 6 : From	60 to 70				-				
•					•				
User defined Values [over-rid	es program computed value	s]							
	She	ll Side	Tube Side						
User	defined MAWP : 0		0						
User defined MA	P New and Cold : 0		0	kgf/cm²					
User defined Hydro	o-Test Pressure : 0		0						
	Tube required Thickness [To]	ternal Pres]	= 0.4343 [Externa	I Pres] = 0.7265	imm [Help		ок	Cance

7.2 Tube sheet Properties:

Fill up the tube sheet information. In our case,

- 7.2.a Distance from Node= 19 cm
- 7.2.b Tube sheet type: Stationary tube sheet gasketed on both side.
- 7.2.c Outside Diameter= adjacent flange face ID -3mm In our case Tube sheet OD= 1320-3= 1317mm
- 7.2.d Corrosion allowance Shell and channel side.

Corrosion allowance Shell and channel side 3.2 mm both side

- 7.2.e Give depth of Groove if any. Depth of groove= 6 mm
- 7.2.f Give thickness of extended portion if tube sheet is extended as flange.

Heat Exchanger Tubesheet Input	
besheet Type and Design Code TubeShe	eet Properties Tube Data Expansion Joint Data Load Cases Floating Tubesheet Spherical Cover / Backing Ring
Description :	STATIONARY TUBE
Element From Node :	40 [Press F8 - to Enable and Change if needed]
Dist. from "From" Node :	19 cm
Tubesheet Type :	(d) Stationary tubesheets, gasketed on both sides
Outside Diameter :	1317 mm
Tubesheet Thickness :	
Corr. Allow. Shell side / Channel side :	3.2 3.2 mm Tubesheet Extended as Elapses 3
Depth of Groove in Tubesheet (if any) :	
Weld Leg at back of Tubesheet (if any) :	0 Thickness of Extended portion : 95 mm
	Tfr/T ratio for U-Tubesheets (optional) :
UnTubed Lane Area :	0 cm ²
Backing Ring	
Packing Ding Thickness (n mm
Backing Ring ID (OD :	
G Dimension for Backing Ring :	mm m
] I
ASME Part UHX / EN-13445 Shell Band Da	ata
Is there a Shell Band? : 📃 She	ell Thickness Adiacent to Tubesheet :
Shell Band Length a	diacent to Tubecheet front end (1 : 0
Shell Band Length a	
Shore band bongan a	
PD 5500	
How are Tubesheets	Clamped :
TRI in Delete	Help OK Cancel
meress F1	

7.3 Tube Data:

- 7.3.a Number of Tube holes Number of holes= 958
- 7.3.b Hole pattern: Specify the total number of tube holes drilled in one of the tubesheets. The code expects the holes to be fairly evenly spaced over the entire area of the tubesheet without large areas that are not drilled. The pattern in which the tubes are arranged can be either a Square, or a Triangular. Hole pattern = square Pitch= 32 mm Tube OD= 25.4
- 7.3.c Length of expanded portion of tube: Enter the length of tube that is expanded into the tubesheet hole. This value may not exceed the full thickness of the tubesheet to avoid failure of the tube at the inner tubesheet face, and is usually in the region of about 80% to 90% of the tubesheet thickness. (For tube to tube sheet joint expanded only, generally take length of expansion= Tube sheet tkickness-3) Length of expansion= 113 mm
- 7.3.d Radius of Outer most tube hole centre:
 Enter the distance from the center of the tubesheet to the centerline of the tube furthest away.
 Radius of Outer most tube hole centre= 587.3 mm
- 7.3.e Distance between Innermost Tube Centers:
 Where a Partition Plate is installed, the innermost lanes of tubes may be further apart than general tube pitch in the remainder of the tubesheet. This is maximum distance between the tube innermost centers. If there is no partition plate, this value is zero.
 Distance between Innermost Tube Centers= 45
- 7.3.f Straight Length of Tubes: Specify the straight length of the tubes There are two options Straight Length of Tubes measured between inner face or in outer face.
 Straight Length of Tubes measured between outer face= 5994mm

7.3.g Tube Weld Joint Type

Following table lists the options for the tube/tubesheet welds (ASME UW-20):

Full Strength:	In this weld the design strength is equal to or greater than the maximum allowable axial tube strength.
Partial Strength:	This weld is designed based on the actual tube-tubesheet axial load.
Seal Weld:	No calculations are performed in this case.

- 7.3.h Select Tube joint type
- 7.3.i Maximum Distance between two Tube Supports
 Tubes are supported by each of the tubesheets, but along the heat exchanger, there are a number of supports often called baffles. Enter the Maximum
 Unsupported Length between supports because PV Elite uses this dimension to determine the buckling stress in the tubes. Carefully examine the design of the exchanger, and ensure the maximum possible unsupported length is entered. Max. Distance of 1st tube support from tube sheet = 1297.3mm
 Max. Distance between two tube supports = 700 mm

Sheet shows tube data:

ibesheet Type and Design Code TubeSheet Proper	ties Tube Data	Expansion Joint [Data Load Cases	Floating Tubesheet S	pherical Cover	/ Backing Rin(g
Basic Tube Data			Tube-Tubesheet	Weld			
Number of Holes / Pattern : Wall Thickness / Corrosion Allowance : Outside Diameter / Pitch : Length of Expanded Portion of Tube : Radius to Outermost Tube Hole Center : Distance between Innermost Tube Centers : Straight Tube Length measured between : Perimeter of Tube Layout (if needed) : Area of Tube Layout (if needed) : Tube Layout Assistant	958 Squa 2 0 25.4 32 113 mm 587.3 0 if 5994 0 if Outer Faces 0 mm 0 mm 0 cm² Import Layout Res 0 mm	no Partitions	Fille Groov Design Strength: Allov Is Tub ASME 1 - Interface Pre	et Weld Leg Size (if any) ve Weld Leg Size (if any) (not for fixed TS types) Tube Weld Joint Type Tube Joint Load Method e-Tubesheet Jt, tested ube Jt, Reliablity Factor essures Tube expansion, Po	:: 0 : 0 : 0 : 0 :: 0 :: i : ASME APP. :: : : : 0 :: 0	mm kgf A A kgf/cm ²	
PD 5500 or TEMA / ASME Fixed Tubesheet Input Max. Dist. from Tubesheet to 1st Tube Support :	1297.03		Tube Form Is this a Weld	ed Tube (not Seamless)	?:		
Max. Dist. bet. 2 Tube Supports : or End Condition k / Max. unSupported Len SL :	0 0	mm	Tube Side Liquid	Specific Gravity vity of the Operating Lic	uid in the Tube	ıs : 0	
PD 5500 Additional Input Tube Hole Diamter, dh : Number of Grooves in Hole :	0 mm						
TRI in Delete				Help	ОК	Ca	incel

Input the load cases as shown in sheet: Sheet shows load cases enter for our problem.

Number of cases to process : 1 Ca	se Description : D	ESIGN	Vacuum F	Pressures and Repor	t Options for this Loa	d Case
Active Load Case : 💂 1	Shell	Channel	Tubes	Tubesheet	Shell Band	
Design Pressure :	21.7	32.6	kgf/cm²			10
Design Temperature :	275	240	275	275		
Use Operating Metal Temperatures (UHX) :	-1.13646e-007	-1.13646e-007	-1,13646e-007	-1.13646e-007	lc	
Material :		24	SA-179	5A-266 4	SA-516 70	
Mean Metal Temperature along length :	0		0	c	15	
Metal Temperature at Tubesheet Rim :	21,111	21,111		21,111	c	
Database lookup and Properties :			Tubes	Tubesheet	Shell Band	
Modulus of Elasticity	Exchanger subj	iect to cyclic or dyna	mic reactions due to	pressure or thermal	variations? (see UHX-	13.8)
User-defined values :						
Modulus at Temperature :	0	0	0	0	0	
Modulus at Mean Metal Temp along length :	0		0			kaf/cm2
Modulus at Mean Metal Temperature :		0		0		
Modulus at Ambient Temperature :	0	0	0	0	0	
Coeffecient of Thermal Expansion (alpha value	es)					
User-defined values :						
Alpha at Mean Metal Temp along length :	0]	0		0	mm/mm/C
Alpha at Metal Temp at Tubesheet Rim :	0	0		0	0	
Differential Pressure Design? : 📃			Expansion Join	t Material : SA-516	70 MəH	
Differential Design Pressure : 0	kgf/cm²				(Hadin	
To the Durbaness Operation in the Court		fen (***)2 : 📼				
Is the Exchanger Operating in the Creep Ra	nge (skip EP,use 35	o for Sps)? :				

Find out the Floating Head data in the following stages:

<u>Step 8.</u> Floating tube sheet

8.1.Specify OTL **OTL= 1200mm** 8.2. Specify Gasket width Gasket width=10mm 8.3. Floating tube sheet face ID (B-3) = OTL + 2xY(Y=3 for tube to tube sheet joint expanded only, & y= 5 for tube to tube sheet joint type welded type.) Floating tube sheet face $ID = 1200 + 2 \times 3$ Floating tube sheet face ID= 1206 mm 8.4.Floating head Flange ID (B)= Floating tube sheet face ID+3 Floating head Flange ID (B)= 1206 +3 Floating head Flange ID (B)= 1209 mm 8.5. Floating head Flange Face ID= Floating head Flange ID Floating head Flange Face ID= 1209 mm 8.6.Gasket ID= Flange Face ID+3 Gasket ID= (B+3)= 1209+3 Gasket ID= 1212 mm 8.7.Gasket OD= Gasket ID + 2x Gasket width Gasket OD= 1212+ 2x10 Gasket OD= 1232 mm 8.8.Floating tube sheet OD= Gasket OD+ 2x4 Floating tube sheet OD= 1232+ 2x4 Floating tube sheet OD= 1240 mm 8.9. Flange face OD= Floating tube sheet OD +3 Flange face OD = 1240 + 3Flange face OD= 1243 mm 8.10. Select Bolt size **Bolt Size= 36** 8.11. BCD= Flange ID+ 3+ 2xRh (Refet TEMA Table D-5M for Value of Rh & E) BCD = 1209 + 2x41BCD= 1291 mm 8.12. Flange OD= BCD+2xE Flange OD= 1291+ 2x41 Flange OD= 1373 8.13. Backing Ring OD= Flange OD **Backing Ring OD= 1373** 8.14. Backing Ring ID= B-1 **Backing Ring ID= 1209-1 Backing Ring ID= 1208** 8.15. Backing Ring Groove OD= Tube Sheet OD **Backing Ring Groove OD= 1240 mm** Sheet Shows Floating Head Flange Head flange Head Input details

1 410-HM-1CD EF Rev 1.PVI:1 - PVE	lite	
File Input View Details Auxiliary	Analyz Heat Exchanger Tubesheet Input	
i 🗅 📁 🗛 🛛 🕹 🗖 📥 🜰		
Flange and Gasket Information		
Ge Flanged Portion ID (B) / OD (A) : Flange Face ID / OD : Gasket ID / OD :	1209 1351 1209 1243 mm	_
Gasket Factor m / y :	3 703.07 kgf/cm ²	
Flange Face Sketch / Column :		
Gasket Thickness :	4.5	
Nubbin Width :		
Partition Gasket (if present)	·····································	
Length / Width :	1216 10 mm 1/2 Gasket OD	
Gasket Factor m / y :	3.75 632.763 kgf/cm ²	
Flange Face Sketch / Column :	1a V I V 1/2C	
Thread Series : Number of Bolts : Bolt Circle Dia (C) / Nom Bolt Dia :	UNC Root Area : 0 cm ² 56	
Bolk Design Temperature :		
Bolt Material	SA-193 B7M Matl.	
Alternate Bolt Loads (used if greater	r than calculated values)	
Operating Wm1 / Seating Wm2 :		
Design W :	C C C C C C C C C C C C C C C C C C C	
	OK	ncel
I Ge Res. Rina IV	Min HTRI in Delete	
For Help, press F1		
🦺 start 👔 🔁 Micro Protol Out	tput C 🛛 🗐 Design procedure for 👔 410-HM-1CD EF Rev 🛛 🏰 Microprotol Sketcher	I

Sheet Shows Floating Head Flange Head flange Head Input details

File Input View Details Auxiliary Analyze Output Tools 3D Diagnostics Esl Help Heat Exchanger Tubesheet Input Tubesheet Type and Design Code TubeSheet Properties Tube Data Expansion Joint Data Load Cases Floating Tubesheet Spherical Cover / Backing Ring	C
Biched Cover and Flange Data Design Temperature : 275 Draw of Floating Head : Image Data Inside Crown Radus (L) : 970.4 Head Thickness (t) : 34 Head Thickness (t) : 34 Head Internal Corrosion Allowance : 3.2 Flange Thickness (t) : 132 Slotted Flange ? : Image Data Full Face Gasket Option : Image Data Head Material : SA-266 4 Medum Image State from Flange Centroid to Head Centerline (hr) : 21.6196 Dimensions hr and Q Distance from Flange Centroid to Head Centerline (hr) : 21.6196 Distance from Flange Centroid to Head Centerline (hr) : 21.6196 mm Distance from Flange Top to Flange/Head Intersection : 25 Compute The ease and the metal image State image	
HTRI in Delete OK Cancel	
🦀 Start 👔 🗁 Micro Protol Output C 🛛 🗐 Design procedure for 🌗 410-HM-1CD EF Rev 🛛 🏰 Microprotol Sketcher 🖉 🔤 Design.rtf [C	lomp

Step 9. Barrel design

Cylindrical shell under internal pressure. For Barrel shell design follow the Step 1 & give shell side input values. Barrel ID= Floating flange OD+ 2x M M= Gap between barrel shell ID and Floating flange OD. Value of M depends on shell ID Barrel ID= 1351+ 2X12 Barrel ID= 1375mm We have considered, Barrel ID= 1385mm P= 21.7 Kg/Cm² Ca= 3.2 mm T= 275°C Software will compute the required thickness. t= 14.19 mm Round up the value and select the standard thickness of 16mm.

-		
Element Data		
Element Description	CH cover	
From Node	10	
To Node	20	
Element Type	Body Flange	
Diameter Basis	ID	
Blind Flange OD, mm	1505	
Overall Flange Length, cm	13	
Finished Thickness, mm	130	
Nominal Thickness, mm	146	
Internal Corrosion Allowance, mm	3.2	
External Corrosion Allowance, mm	0	
Wind Diameter Multiplier	1.2	
Material Name	SA-266 4	
Longitudinal Seam Efficiency	1	
Circumferential Seam Efficiency	1	
Internal Pressure, kgf/cm ²	32.6	
Temperature for Internal Pressure, C	240	
External Pressure, kgf/cm ²	0	
Temperature for External Pressure, \subset	0	
Additional Element Data		
Perform Flange Calculation	~	
Flange Weight, kgf	0	
ANSI/DIN Class	None	
ANSI/DIN Grade	None	
Flange Type	Weld Neck	
Nominal Size Lookup		-

Step 10. SH Cover Flange Give Input values in the following steps.

- 10.1. Select the flange type Weld neck
- 10.2. Select MOC of flange SA266 GR 4 Software will automatically take stress values for specified MOC at design conditions.
- 10.3. Enter Design Pressure, Temperature & Joint efficiency. P= 32.6 Kg/Cm² Ca= 3.2 mm T= 240°C Joint Efficiency= 1
- 10.4. Go to flange dialogue screen and enter the data in the following steps 10.4.a. Flange ID = Barrel shell ID Flange ID= 1385 mm
 - 10.4.b. Face ID = Flange ID
 - Face **ID** = 1385 mm
 - Gasket ID depends on type of gasket used. **10.4.c. Gasket ID = Face ID + 2 x Corrosion allowance** The Spiral wound Gasket consists of 13mm of inner ring and 4mm of outer ring. In this case, Gasket ID = Face ID + 2 x Corrosion allowance + (13 x2)Gasket type= Spiral wound Gasket ID= $1385 + (2 \times 3.2) + (13 \times 2)$ Gasket ID= 1418 mm Gasket OD = Gasket ID + (2 x Gasket width)10.4.d. Gasket OD = 1418+13x2 Gasket OD = 1444 mm 10.4.e. Face OD = Gasket OD+3 (in case of Female type face) For male type face, Face OD = Gasket OD For Spiral wound gasket add 8mm in Face OD for outer gasket ring. Face OD = 1444 + 4x2 + 3
 - Face **OD** = 1455
- 10.5. In case of Weld neck Flange,

Thickness of hub at smaller end (Gi) = Shell (or Channel) thickness Thickness of shell at large End (Go) = 1.5 x Gi Hub Length (HL) = 2 x Gi (This value can be equal to 1.5 to 2 x Gi) Gi= 16 mm Go= 24 mm HL= 32 mm

- 10.6. Select Bolt Material, thread series & size of Bolt. (Initially consider smaller size of bolts to perform the calculation)
 Bolt MOC= SA193 B7
 Software will automatically take stress values for specified MOC at design conditions.
 Thread series= UNC
 Bolt Size= 25.4 mm
- 10.7. Select the number of bolts to satisfy the required bolt area. Number of bolts= 68
- 10.8. BCD = Flange ID + Go + 2Rh Rh is radial distance between Bolt circle and Flange BCD= 1385 + 2 x 24 + 2x34.92 Minimum BCD= 1502.8 Minimum Circumferential distance between two bolts is 57.15 To satisfy the above conditions selecting the BCD of 1505 mm
- 10.9. Flange OD = BCD + 2E

For Minimum value for Rh & E refer TEMA Table D-5M (Note: As size of Flange depends on BCD, try to keep BCD as minimum as possible. Minimum Circumferential spacing between bolts should be kept according to TEMA Table D-5M.) Flange OD= 1505+2x26.99 Flange OD= 1558.98 Say 1560 mm

- 10.10. Select the gasket material & thickness. Gasket MOC= Spiral wound Gasket thickness= 4.5 mm Software will automatically take stress values for specified MOC at design conditions.
- 10.11. Put the external loading information. Put banding moment due to various attachments to the flange. Bending Moment= 724 kg-m
- 10.12. Select the option Use full bolt load calculation. (generally customer asks this) Flange thickness= 132 mm

				-	_	-	-			_	
Select a Flange Type	-			-							_
• 🎦 🜼					© 🎵		0	L	0	•	F
Description	: SH COVE	R FL			Mating F	Flange (use F1 hel	p for ex	changers))		
Flange		1385	1560	mm		Operating, '	Wm1 :	0			
Face		1385	1455	mm		Seating, '	Wm2 :	0		kgf	
Gasket		1418	1444	mm		Desig	n, W : [0			
Hub Dimensions				-	External	Loads (e.g. from	piping)				
Thickness Large	: Small : 2	24	16	mm		Axial F	orce :	0			
Hub	Length :	32		mm		Bending Mo	ment : [724		kgf-m.	
Bolts					Partition	n Gasket					
Bolt Material	: SA-193 B	37	Matl.			Length \	Width :	0	0	mm	
Bolt Circle Diameter	: 1505		mm			Sketch Co	olumn : [1a 🔹	II	-	
Thread Series	: UNC		•			Gasket Factor	m y :[0	0	kgf/cm	2
Nominal Bolt Diameter	: 25.4	mm			Additional	Flange Data —					
Number of Bolts	: 68	7			🔽 Ba	se Required Thick	ness on	Rigidity (A	SME V	III-1)?	
Root Area	: 0	cm ²			🔽 Ind	lude Corrosion in	Flange 1	Thickness	Calcula	tions?	
Gasket					🗖 Ar	e the Hub and Att	ached S	hell Materi	ials the	Same?	
Gasket Factor m y	: 3	703.07	kgf/cr	m²							
Sketch Column	: 1a 🕂	- II	•								
Gasket Thickness	: 4.5		mm								
Nubbin or RTJ Width	: 0		mm								
ANSI/DIN Flange Dime	nsion Looku	IP									
	odard Elacia	ie (No Calcul	lation perfe	-med \2							
📄 Is this a Star	nuaru Hang		adon pont	Fla	ange Thickness	: mm				_	_
Is this a Star	AN	SI Series A	adon port	Fla	ange Thickness 32	: mm 🔽 Use	e Full Bol	lt Load in d	alc (Sa	*Ab)?	Design
□ Is this a Star Class: 150 ▼ Grade: GR 1.1 ▼	Illiaru Flang AN	SI Series A SI Series B		Fla	inge Thickness 32	: mm Vuse Just like :	: Full Bol	lt Load in d	alc (Sa	*Ab)?	Desigr Copy no
□ Is this a Star Class: 150 Grade: GR 1.1 Nom: 12	ILLIANG AN O AN Ge	ISI Series A ISI Series B St Flange Din	nensions n	ow!	ange Thickness 32 Delet	: mm V Use Just like : eOK	e Full Bol	lt Load in o Cancel	alc (Sa	*Ab)?	Desigr Copy na Help
Is this a Star Class: 150 Grade: GR 1.1 Nom: 12		SI Series A SI Series B et Flange Din Circo	nensions n umferentia	ow! I Spacing: Min	ange Thickness 32 Delet nimum 57.15	: mm Just like : eOK actual 69.51 Max	Full Bol	lt Load in o Cancel 71.60 mm	alc (Sa	*Ab)?	Desigr Copy na Help
Is this a Star Class: 150	It to Edge:	ISI Series A ISI Series B et Flange Dir Circi Minimum 26.	nensions n umferentia 99 Actual	ow! I Spacing: Min 27.50 mm [0	ange Thickness 32 Delet nimum 57.15 Ok]	: mm Just like : eOK Actual 69.51 Max Hub to Bo	Full Bol	t Load in o Cancel '1.60 mm num 34.92	calc (Sa) ([Ok] 2 Actua	*Ab)?	Desigr Copy no Help k]
Is this a Star Class: 150 Grade: GR 1.1 Nom: 12 Spacing : Bo	ILLARU PLANG	ISI Series A ISI Series B et Flange Dir Circi Minimum 26. Thickness Ir	nensions n umferentia 99 Actual nternal: 12	Image: Sineary: Fla 0w! 1 0w! 1 1 Spacing: Min 27.50 mm 27.50 mm 1 8.854 Exter	ange Thickness 32 Delet nimum 57.15 Ok] rnal: 0.000	: mm Just like : e OK Actual 69.51 Max Hub to Bo Actual Thickness	Full Bol	Cancel (1.60 mm num 34.92	calc (Sa) [Ok] 2 Actua Passed	*Ab)?	Desigr Copy na Help k]
Is this a Star Class: 150 • Grade: GR 1.1 • Nom: 12 • ipacing : Bo	It to Edge: Required	ISI Series A ISI Series B et Flange Dir Circo Minimum 26. Thickness Ir tol Output C	nensions n umferentia 99 Actual nternal: 12	ow! I Spacing: Min 27.50 mm [4 8.854 Exter Microsoft Exter	ange Thickness 32 Delet nimum 57.15 Ok] rnal: 0.000 kcel	: mm Use Just like : e OK Actual 69.51 Max Hub to Bo Actual Thickness Posign pro	Full Bol imum 27 olt: Minin r: 132. cedure I	Cancel (1.60 mm num 34.92 000 mm [1	calc (Sa Cok] 2 Actua Passed	*Ab)? Plot al 36.00 mm [C] 10-HM-1CD EF F	Desigi Copy nu Help k]

Nominal flange thickness= Flange thickness+ Step+ Hub length

In our case add 6 mm step in flange thickness.

Nominal flange thickness= 132+6+32= 170

Step 11. SH RHS Flange Repeat the design procedure for Sh RH Flange.

- 11.1. Select the flange type Weld neck
- **11.2.** Select MOC of flange similar to adjacent flange.
- 11.3. Enter Design Pressure, Temperature & Joint efficiency. P= 21.7 Kg/Cm² Ca= 3.2 mm T= 275°C Joint Efficiency= 1
- **11.4.** Go to flange dialogue screen and enter the data in the following steps (Flange dimensions will be same as adjacent flange dimensions.)
 - a. Flange ID similar to adjacent flange ID.
 Flange ID= 1250 mm
 b. Face ID
 Face ID = 1250 mm
 c. Face OD = Face OD of Barrel Flange 3
 Face OD = 1455-3
 - Face **OD** = 1452
 - d. Gasket ID & OD similar to adjacent flange Gasket ID & OD Gasket ID= 1418 mm Gasket OD = 1444 mm
- 11.5. In case of Weld neck Flange,

Thickness of hub at smaller end (Gi) = Shell (or Channel) thickness Thickness of shell at large End (Go) = 1.5 x Gi Hub Length (HL) = 2 x Gi (This value can be equal to 1.5 to 2 x Gi) Gi= 14 mm Go= 21 mm HL= 28 mm (Change this value of Gi, Go & HL according to designed shell thickness)

- 11.6. Select Bolt Material, thread series & size of Bolt. Similar to adjacent flange Bolt MOC= SA193 B7 Thread series= UNC Bolt Size= 25.4 mm
- 11.7. Select the number of bolts to satisfy the required bolt area. Number of bolts will be similar to adjacent flange.
 Number of bolts= 68

- 11.8. BCD = Similar to adjacent flange BCD BCD= 1505
- 11.9. Flange OD = Similar to adjacent flange Flange OD= 1560
- 11.10. The gasket material & thickness will be similar to adjacent flange.
 Gasket MOC= Spiral wound
 Gasket thickness= 4.5 mm
 Software will automatically take stress values for specified MOC at design conditions.
- 11.11. Put the external loading information. Put banding moment due to various attachments to the flange. Bending Moment= 724 kg-m
- 11.12. Select the option Use full bolt load calculation. (generally customer asks this)
- 11.13. PV-Ellie software will automatically considers Matching flange load.
- **11.14.** Give flange thickness. (initially consider smaller thickness then select flange thickness to satisfy required conditions)

Flange thickness= 154 mm

Description: SH	I RH FLANGE			Mating Flange (use F1 help for e	xchangers)		
Flange ID (DD : 1250	1560	mm	Operating, Wm1 :	0		
Face ID (DD: 1250	1452	mm	Seating, Wm2 :	0		kgf
Gasket ID (DD: 1418	1444	mm	Design, W :	0		
Hub Dimensions				External Loads (e.g. from piping)	-		
Thickness Large Sm	iall : 21	14	mm	Axial Force :	0		
Hub Lenç	th : 28		mm	Bending Moment :	724		kgf-m.
Bolts				Partition Gasket			
Bolt Material : S/	4-193 B7	Matl		Length Width :	0	0	mm
Bolt Circle Diameter : 15	:05	mm		Sketch Column :	1a 💌	II 🔻	
Thread Series : UN	IC	•		Gasket Factor m y :	0	0	kgf/cm²
Nominal Bolt Diameter : 25	.4 mm			Additional Flange Data		(),)	
Number of Bolts : 68				Base Required Thickness or	n Rigidity (AS	ME VIII-1)?	
Root Area : 0				🔽 Include Corrosion in Flange	Thickness C	alculations?	
] =			🔲 Ava tha Hub and Attached S	Eboll Matoria	le the Same?	
Gasket					onen Materia	is the parite?	
Gasket Factor m y : 3	703.07	kgf/cm ²	2				
Sketch Column : 1a	▼ II	•					
Gasket Thickness · 4	5	mm					
Gabrier Hierdioss 1 Tr		mm					
Nubbin or RTJ Width : 0							
	Lookup						
ANSI/DIN Flange Dimension	Lookup Elange (No Calcu	lation perfor	ned)?				
ANSI/DIN Flange Dimension	Lookup I Flange (No Calcu	lation perfor	ned)? Flange	• Thickness : mm			Design
ANSI/DIN Flange Dimension	Lookup Flange (No Calcu ANSI Series A ANSI Series B	lation perfor	ned)? Flange 154	Thickness : mm	olt Load in ca	lc (Sa*Ab)?	Design
ANSI/DIN Flange Dimension	Lookup Flange (No Calcu ANSI Series A ANSI Series B	lation perfor	Flange	Thickness : mm	olt Load in ca	lc (Sa*Ab)?	Design Copy now
ANSI/DIN Flange Dimension	Lookup Flange (No Calcu ANSI Series A ANSI Series B Get Flange Di	lation perfor	Hange Flange 154	Delete	olt Load in ca Cancel	lc (Sa*Ab)?	Design Copy now Help
ANSI/DIN Flange Dimension	Lookup Flange (No Calcu ANSI Series A @ ANSI Series B Get Flange Di Circ	lation perfon mensions nov umferential S	red)? Flange 154	Phickness : mm Use Full Bo Just like : Delete OK 57.15 Actual 69.51 Maximum 3	olt Load in ca Cancel 09.31 mm [C	lc (Sa*Ab)?	Copy now Help
ANSI/DIN Flange Dimension	Lookup Hange (No Calcu ANSI Series A ANSI Series B	lation perfor	ned)? Flange 154	Thickness : mm	olt Load in ca	lc (Sa*Ab)?	Design

Required & provided thickness is shown at the bottom of the sheet. Add Step in Flange thickness according to thickness of gasket. (Note: As flange face is male type, no need to add step in flange thickness) Nominal flange thickness= Flange thickness+ Hub length Nominal flange thickness= 154+28= 182